Receiver-based Recovery of Clipped OFDM Signals for PAPR Reduction:
A Bayesian Approach

Anum Ali\(^1\), Abdullatif Al-Rabah\(^1\), Mudassir Masood\(^1\)
and Tareq Y. Al-Naffouri\(^{1,2}\)

\(^1\)Department of Electrical Engineering,
King Abdullah University of Science and Technology,
Makkah Province, Thuwal, Saudi Arabia.

\(^2\)Department of Electrical Engineering,
King Fahd University of Petroleum and Minerals,
Eastern Province, Dhahran, Saudi Arabia.
Motivation

Bayesian Clipping Recovery

Reliable Carriers as Measurements

Prior Information about clipping

Multiple Antenna Receivers

Multiple User System

Clipped OFDM and Channel Estimation
Content

Motivation

Bayesian Clipping Recovery

Reliable Carriers as Measurements

Prior Information about clipping

Multiple Antenna Receivers

Multiple User System

Clipped OFDM and Channel Estimation
OFDM

- OFDM is a multi-carrier modulation scheme that uses orthogonal carriers.
- Main Advantages include
 - Robustness against multi-path fading.
 - High data rate.
 - Easy single tap equalization.
- The main disadvantage is **High PAPR!** [1]
High PAPR

\[\begin{bmatrix} 1011 \\ 1001 \\ \vdots \\ 1101 \end{bmatrix} \begin{bmatrix} 3 + 2j \\ 4 + 3j \\ \vdots \\ 2 - 3j \end{bmatrix} \]

A mixture of Sinusoids

\[\begin{bmatrix} 1010 \cdots 101 \end{bmatrix} \]

Incoming data stream → S/P → QAM → IDFT → high PAPR Signal

- **Transmitter based schemes**
 - coding, partial transmit sequence (PTS), selected mapping (SLM), interleaving, tone reservation (TR), tone injection (TI) and active constellation extension (ACE).
 - Transmitter-based techniques are complex.
Clipping

- We follow a clipping scheme
- Clip signal above a prespecified threshold γ

$$x_p(i) = \begin{cases} \gamma e^{j\angle x(i)} & \text{if } |x(i)| > \gamma \\ x(i) & \text{otherwise} \end{cases}$$

- $x_p(i) = x(i) + c(i)$

QAM $\begin{bmatrix} 3 + 2j \\ 0 \\ \vdots \\ 2 - 3j \end{bmatrix}$

- Implications:
 - Clipping signal is sparse!
 - Pilot contamination.
 - Inter-user Interference.
Content

Motivation

Bayesian Clipping Recovery

Reliable Carriers as Measurements

Prior Information about clipping

Multiple Antenna Receivers

Multiple User System

Clipped OFDM and Channel Estimation
Bayesian Sparse Signal Recovery

Implications of Sparsity

- Signal can be reconstructed using sparse signal recovery methods.
- Few Measurements will be required.

Why Bayesian Recovery?\(^a\)

- Low Complexity.
- Signal statistics are not required.
- Agnostic to distribution.
- Noise statistics are utilized.

\(^a\)By Bayesian recovery, we refer to the utilized SABMP scheme [2].
Content

Motivation

Bayesian Clipping Recovery

Reliable Carriers as Measurements

Prior Information about clipping

Multiple Antenna Receivers

Multiple User System

Clipped OFDM and Channel Estimation
Reserved tones reduce bandwidth efficiency.

Some data carriers (called Reliable tones) can be used as measurements.

Question

How to select the tones which are most likely to be in their correct decision region?

- Calculate the metric \[R = \frac{\Pr(\lfloor \hat{X}(i) \rfloor = X(i))}{\Pr(\lfloor \hat{X}(i) \rfloor \neq X(i))} \]

\[\lfloor \cdot \rfloor \] denotes hard decision.
Content

Motivation

Bayesian Clipping Recovery

Reliable Carriers as Measurements

Prior Information about clipping

Multiple Antenna Receivers

Multiple User System

Clipped OFDM and Channel Estimation
Phase and Likelihood

- Clipping operation does not affect the phase.

- Phase of the clipping signal can be retrieved from the received clipped signal.
- This helps in increasing the measurements.

- Probability of a clipping element is high, if received signal is closer to threshold.
- Find the dominant support faster and accurately.
Simulation Results

Simulation Parameters:
- Subcarriers: 512
- QAM Order: 64
- Reliable Carriers: 128
- Clipping Ratio: 1.61

Simulated BER vs. E_b/N_0 for different methods:
- No Est
- SABMP
- WPA-SABMP
- PA-FBMP
- WPAL
- Oracle-LS

Simulation Parameters:
- Subcarriers: 512
- QAM Order: 64
- Reliable Carriers: 128
- Clipping Ratio: 1.61
Content

Motivation

Bayesian Clipping Recovery

Reliable Carriers as Measurements

Prior Information about clipping

Multiple Antenna Receivers

Multiple User System

Clipped OFDM and Channel Estimation
Same clipping on all antennas

- Multiple receiver antennas provide more measurements for clipping reconstruction.
- Use measurements from all antennas together to improve clipping mitigation [4].

\[
\begin{bmatrix}
\tilde{y}_1 \\
\tilde{y}_2 \\
\vdots \\
\tilde{y}_L
\end{bmatrix} =
\begin{bmatrix}
\tilde{\Phi}_1 \\
\tilde{\Phi}_2 \\
\vdots \\
\tilde{\Phi}_L
\end{bmatrix}
\begin{bmatrix}
c \\
\tilde{Z}_1 \\
\tilde{Z}_2 \\
\vdots \\
\tilde{Z}_L
\end{bmatrix},
\]

Distortion Estimation

- Distortion Cancellation
- Distortion Cancellation

MRC Combiner

Sparse Bayesian Clipping Recovery
Simulation Results

Simulation Parameters:

- Subcarriers: 512
- QAM Order: 64
- Reliable Carriers: 77
- Eb/N0: 27 dB
- Antennas: 2
Content

Motivation

Bayesian Clipping Recovery

Reliable Carriers as Measurements

Prior Information about clipping

Multiple Antenna Receivers

Multiple User System

Clipped OFDM and Channel Estimation
OFDMA System

Orthogonal Channel Allocation

Challenge → Distortions Overlap in Frequency Domain

Two Stage Recovery

- Initially reconstruct jointly.
- Form decoupled systems.
- Perform individual reconstruction.

Sparse Bayesian Clipping Recovery
Simulation Results

Simulation Parameters:

- Subcarriers: 512
- Users: 2
- QAM Order: 64
- Reserved Tones: 75
- Clipping Ratio: 1.61
Content

Motivation

Bayesian Clipping Recovery

Reliable Carriers as Measurements

Prior Information about clipping

Multiple Antenna Receivers

Multiple User System

Clipped OFDM and Channel Estimation
Contaminated Pilots

Solutions

- Increase pilots.
- Data Aided pilot Estimation.

Proposed

- Estimate Corrupted Pilots.
- Use estimated and data aided pilots together.
Results

-40 -35 -30 -25 -20 -15
10 15 20 25 30

≈ 7.2dB

Simulation Parameters:
- Subcarriers: 256
- QAM Order: 64
- Pilot Tones: 16
- Reliable Tones: 16
- Clipping Ratio: 1.73

Simulation Parameters:

- Subcarriers: 256
- QAM Order: 64
- Pilot Tones: 16
- Reliable Tones: 16
- Clipping Ratio: 1.73

For more information...

▶ Email:
tareq.alnaffouri@kaust.edu.sa

▶ For details and relevant papers:
http://faculty.kfupm.edu.sa/ee/naffouri/publications.html

THANK YOU!