Vehicle-to-Vehicle Communication for Autonomous Vehicles: Safety and Maneuver Planning

Anum Ali', Libin Jiang², Shailesh Patil ${ }^{3}$, Junyi Li'2, and Robert W. Heath Jr.'
'The University of Texas at Austin,Austin, TX. ${ }^{2}$ ºualcomm R\&D, Bridgewater, NJ. ${ }^{3}$ Qualcomm R\&D, San Diego, CA.

This research was partially supported by the U.S. Department of Transportation through the Data-Supported Transportation Operations and Planning (D-STOP) Tier 1 University Transportation Center, the National Science Foundation under Grant No. ECCS-1711702, and a gift from Qualcomm.

Out-of-range vehicle

Outline

Quantifying the benefits of V2V

Safety

Accidents involving AV s
Accidents potentially avoided Using V2V

Maneuver planning
Lane change and turns
NLOS sensing andimention sharing

Safety

Autonomous vehicles not necessarily safer

Conventional (2015) [1]

Miles driven: 3,095,373 million Accidents: 6,296,000
Accidents per 100 million miles driven

203

Waymo (aka Google) (20/6/17)
Miles driven: 988,4|2 [2][3]
Accidents: I0 [3]
Accidents per 100 million miles driven
1011

More than $4 x$ higher accident rate for autonomous cars

Red light running accidents

771 deaths and 137,000 injuries in 2015

Waymo vehicle got hit after it's light was green for more than 6 s

At $35 \mathrm{~km} / \mathrm{h}$, an AV will has a stopping distance of 18.3 m with LOS sensing

The road design permits on 6.6 m view [1]

With V2V range of 107 m [2], an AV can make safe stop for up-to 90 km/h

Accident Classification

Accidents reported to DMV in 2016/2017

Accident Type	Lane Change	Rear-end	Intersection	Unclassified	Total
Reported	6	12	1	1	20
Relevant	6	8	1	1	16
V2V can help	6	8	1	1	16

V2V possibly helpful for 100% of the relevant accidents

V2V possibly helpful for 80% of the total accidents involving autonomous cars

Maneuver planning

Maneuver planning

LOS sensing based maneuver planning not necessarily optimal

Maneuver planning

Better path planning with V2V: NLOS sensing and

 trajectory sharing

Lane change Maneuver

Objective: Reach left-most lane

Subsequent travel at maximum allowable speed

Maneuver planning

Three maneuvers

[1] Toledo, Tomer, and David Zohar. "Modeling duration of lane changes." Transportation Research Record: Journal of the Transportation Research Board 1999 (2007): 71-78. [2] https://en.wikipedia.org/wiki/A*_search_algorithm

Sensing and communication assumptions

Vehicle awareness

Trajectory awareness

Trajectory awareness
Vehicle awareness

Example Run

LOS only Ego Vehicle Blue: V2V enabled Ego Vehicle
Black: Currently detected vehicles
Magenta: Current undetected vehicles Line segments: vehicles detected via LOS sensing

Averaged time

Trajectory information helps more than NLOS sensing

Turn Maneuver

Objective: Make right or left turn

Saves time in urban driving

Right turn takes 6.5 sec [1]
Left turn takes 7.5 sec [1]
LOS sensing based on sight triangles

Vehicles arrive at the intersection with exponential rate

Results

Example Run

LOS only Ego Vehicle Blue: V2V enabled Ego Vehicle
Black: Currently detected vehicles
Magenta: Current undetected vehicles Line segments: vehicles detected via LOS sensing

Averaged time

Left-turn

Percent savings higher in left-turn manuever

Conclusion
(睢) TEXAS

Conclusions

V2V can help in reducing the accidents involving AVs

V2V can reduce the time to left-most lane by up to 42\%

V2V can help reduce the time of left and right turn by 47% and 36% respectively

Sharing current speed/velocity is not sufficient - trajectory sharing is needed

Thank you!

Backup slides

Time-to-completion with error

