Beam Management with Orientation and RSRP using Deep Learning for Beyond 5G Systems

Khuong N. Nguyen, Anum Ali, Jianhua Mo, Boon Loong Ng, Vutha Va, and Charlie Zhang

Samsung Research America – Standard and Mobility Innovation Lab March 27th, 2022

WS08 IEEE ICC 22

Agenda

- Introduction
- Approach
- Experimental Results
- Conclusion

Introduction

2022 Samsung Research. All rights reserved

Introduction

Overview

- mmWave beam management can be challenging, particularly in highly dynamic scenarios.
- In this work, we use the orientation information coming from IMU for effective BM.
- We utilize a data-driven strategy that fuses the reference signal received power with orientation information using a RNN.
- The proposed data-driven strategy improves the beam-prediction accuracy up to 34% and increases mean RSRP by up to 4.2 dB when the UE orientation changes quickly.

Introduction

Related Studies

- 3D orientation of a hand-held UE could change quickly in daily usage, e.g., from the portrait to the landscape mode.
- The earlier work on using orientation information for BM has several shortcomings.
 - In particular, the strategy of Shim et al can work only if the AoA aligns with the best beam's peak, which is not guaranteed. As a result, any prediction based on AoA that is incorrect is also likely to be sub-optimal.
 - The beam steering method of Qi et al i.e. relative position/orientation tracking, is useful only in LOS. Furthermore, the beam steering ignores the hardware limitations of current mmWave systems.
 - Unlike this work, the previous techniques do not consider the 5G signaling and realistic beam codebooks.
- Shim, Duk-Sun, et al. "Application of motion sensors for beam-tracking of mobile stations in mmWave communication systems." Sensors 14.10 (2014): 19622-19638.
- Qi, Zichen, and Wei Liu. "Three-dimensional millimetre-wave beam tracking based on smart phone sensor measurements and direction of arrival/time of arrival estimation for 5G networks." IET Microwaves, Antennas & Propagation 12.3 (2018): 271-279.

Approach

2022 Samsung Research. All rights reserved

Overall of the System Model

- We consider a communication system where beam prediction can be generated by using
 - The RSRP information is extracted from beam measurements.
 - The orientation information, is used at the UE side.

RSRP: Reference signal received power IMU: Inertial measurement unit

RSRP Information

- For downlink (DL) BM in 5G NR, the BS sends the beam-formed synchronization signal blocks (SSBs) and CSI reference signals.
- The coordinate systems include

Approach

- The local coordinate system of the BS.
- The local coordinate system used at the UE.

$$s_t = P_T + 10\log_{10}\left(\frac{\text{SCS}}{\text{BW}}\right) + \text{pow2db}\left(\sum_{c=1}^{C} \text{db2pow}\left(p_t^{(c)} + F_{i_t}\left(\varphi_t^{(c)}, \vartheta_t^{(c)}\right) + G_{j_t}\left(\varphi_t^{(c)}, \theta_t^{(c)}\right)\right)\right) + n_t$$

- P_T : BS transmission power, 30 dBm
- SCS: subcarrier spacing, 240kHz
- BW: bandwidth: 100 MHz
- $p_t^{(c)}$: c-th path's gain (dB)
- $F_{i_t}(\varphi_t^{(c)}, \vartheta_t^{(c)})$: BS beam gain (dB) at the c-th path's local angle of departure $(\varphi_t^{(c)}, \vartheta_t^{(c)})$
- $G_{j_t}(\phi_t^{(c)}, \theta_t^{(c)})$: UE beam gain (dB) at the c-th path's local angle of arrival $(\phi_t^{(c)}, \theta_t^{(c)})$
- n_t : RSRP measurement noise (dB)

BS Local coordinate system UE Local coordinate system

RSRP: Reference signal received power

Approach

Orientation Information

- Our objective is to use orientation information coming from an IMU together with the RSRP information for BM.
- The UE orientation at time t is determined by Euler angles α_t , β_t and γ_t .
 - UE has access to the erroneous estimates of Euler angles.

• $R_X(\gamma) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \gamma & -\sin \gamma \\ 0 & \sin \gamma & \cos \gamma \end{bmatrix}$

Approach

Simulation Setup (1/2)

- The ray-tracing channels are generated for downtown Rosslyn, VA, USA, using Wireless InSite® software.
- The A* search algorithm is used to find a short route from one randomly picked destination point to the next.
- The operating frequency is 28 GHz, BW is 100MHz, SCS is 240 kHz, and the transmit power $P_T = 30$ dBm.
- Single isotropic antenna. The UE either uses
 - $M_{UE}^W = 8$ wide beams.
 - $M_{UE}^N = 28$ narrow beams.
- The codebooks are designed assuming 3-bit phaseshifters with no amplitude scaling.

Simulation Setup (2/2)

TABLE I: The four cases with slow or fast rotation speed, normal or sporadic RSRPs information, and smooth or non-smooth rotation.

Case	Rotation speed (σ_r)	RSRP information rate (f)	Rotation smoothness (K)
1	Slow (1°)	Normal (1)	Smooth (21)
2	Fast (10°)	Normal (1)	Smooth (21)
3	Fast (10°)	Sporadic (3)	Smooth (21)
4	Fast (10°)	Sporadic (3)	Non-smooth (5)

- We create 4 test cases to concretely capture the different levels of rotation speed, RSRP information rates, and orientation smoothness.
- The RSRP information rate *f* is either
 - "Normal", f = 1 and we get an RSRP measurement every T_{SS} .
 - "Sporadic", f = 3 and we get an RSRP measurement every $3T_{SS} = 60 ms$.

- The rotation speed σ_r is either
 - Slow $\sigma_r = 1^\circ$ per 20 ms.
 - Fast $\sigma_r = 10^\circ$ per 20 ms.
- The rotation smoothness K is either
 - "Smooth", K = 21.
 - "Non-smooth", K = 5.
- A higher case index is a more favorable scenario for orientation-information use.

Data-driven Beam Management

- Our motivation of using ML to tackle the BM problem comes from the fact that
 - It is a tracking problem and using ML technique such as RNN can help capture the temporal information in the sequential input that can lead to an improved performance compare to other approaches.
 - With a strong fitting ability, Deep Learning has been adopted as a promising solution for mmWave beam alignment, which is inherently a complex nonlinear problem.

Deep Learning Architecture

- The architecture includes
 - LSTM cell with a hidden size of 128 neurons.
 - FC layer of size 2 \times M_{UE} with a ReLU activation.
 - Another FC layer of size M_{UE} with a soft-max activation.

Data Preparation

- Input for one time step is a vector with a shape of $[1 \times (M_{UE} + 9)]$. It consist of the following 2 components:
 - T A table with a size of M_{UE} . The RSRP value of the last measured beam is store at that beam index. The values at other entries are set to 0
 - $R [3 \times 3]$ matrix computed from the current IMU orientation. It is flatten to become a vector with a shape of $[1 \times 9]$

- We partitioned the data across the trajectory
 - The training, validating, and test data split is around 70%, 20%, and 10%.
- We combine all the data to increase the training data size for RNN including
 - 3 different UE speeds
 - 2 different rotation speeds
 - 2 different RSRP information rates
 - 2 levels of smoothness

Training Process

- The RNN adopts the categorical cross-entropy loss function
 - $L_t = -\sum_{m=1}^{M_{UE}} y_{t,m} \log \hat{y}_{t,m}$
 - $y_{t,m}$ is the target value at time t of class m.
 - $\hat{y}_{t,m}$ is the predicted probability at time t of class m.
- Adam optimizer with a learning rate of 0.001 was used.
- The training took 10,000 epochs to converge with a batch size of 6 trajectories

A trajectory of n time steps

Unrolling the RNN

Experimental Results

2022 Samsung Research. All rights reserved

Experimental Results

Particle Filter as a baseline

- The baseline particle filter method was proposed by Ali et al (IEEE Access 2021).
 - It fuses the RSRP and IMU information to track the AoA.
 - Its non-deterministic characteristic might lead to wrong predictions when uninformative sensor readings are collected for an extended period.
 - Its computational intensive requirement (a good filter requires a significant amount of particles) will put quite a burden on the UE.

TABLE I: The four cases with slow or fast rotation speed, normal or sporadic RSRPs information, and smooth or non-smooth rotation.

Comparison of Strategies

Case	Rotation speed (σ_r)	RSRP information rate (f)	Rotation smoothness (K)
1	Slow (1°)	Normal (1)	Smooth (21)
2	Fast (10°)	Normal (1)	Smooth (21)
3	Fast (10°)	Sporadic (3)	Smooth (21)
4	Fast (10°)	Sporadic (3)	Non-smooth (5)

Case		1		2		3		4						
Metric		AC	RSRP	Loss	AC	RSRP	Loss	AC	RSRP	Loss	AC	RSRP	Loss	
$20{\rm km}{\rm h}^{-1}$	WB	RSRP-only	90.16	-101.9	0.17	75.60	-102.57	0.83	49.10	-104.91	3.17	40.43	-105.90	4.15
		PF	73.42	-102.57	0.84	70.65	-102.84	1.10	54.80	-104.53	2.78	50.58	-104.97	3.22
		RNN	88.88	-101.9	0.17	80.71	-102.22	0.47	80.71	-102.22	0.47	60.45	-103.69	1.93
	NB	RSRP-only	63.49	-100.98	0.86	28.55	-104.51	4.42	13.11	-107.63	7.54	11.14	-108.04	7.94
		PF	37.14	-102.99	2.87	33.05	-103.38	3.29	21.72	-105.56	5.47	21.41	-105.66	5.57
		RNN	57.52	-101.02	0.90	43.99	-101.98	1.88	30.08	-103.51	3.42	26.69	-103.99	3.90
	WB	RSRP-only	85.36	-102.59	0.41	72.20	-103.06	1.09	44.16	-105.65	3.68	36.87	-106.53	4.56
		PF	69.06	-103.36	1.18	67.83	-103.30	1.33	49.75	-105.28	3.31	47.19	-105.56	3.60
$60 \text{km} \text{h}^{-1}$		RNN	84.53	-102.55	0.36	78.18	-102.63	0.64	78.18	-102.63	0.64	57.09	-104.24	2.26
00 KIII II	NB	RSRP-only	53.39	-102.21	1.76	26.36	-105.10	4.84	10.74	-108.33	8.07	9.53	-108.73	8.43
		PF	31.62	-103.93	3.48	30.31	-103.95	3.69	18.73	-106.46	6.20	18.34	-106.50	6.20
		RNN	51.58	-101.91	1.44	41.35	-102.47	2.20	28.03	-104.10	3.84	25.40	-104.53	4.22
$100 {\rm km} {\rm h}^{-1}$	WB	RSRP-only	81.07	-102.43	0.66	69.31	-103.22	1.30	41.12	-106.03	4.11	34.52	-106.78	4.86
		PF	67.46	-103.12	1.35	65.03	-103.52	1.60	45.29	-105.76	3.84	42.98	-106.02	4.10
		RNN	80.65	-102.34	0.54	74.36	-102.80	0.86	74.36	-102.80	0.86	52.33	-104.68	2.74
	NB	RSRP-only	46.73	-102.66	2.47	23.86	-105.60	5.26	9.88	-108.52	8.17	9.45	-108.86	8.48
		PF	29.24	-104.28	4.09	27.79	-104.64	4.30	17.00	-106.97	6.63	15.98	-107.14	6.76
		RNN	45.38	-102.11	1.89	37.09	-103.00	2.64	25.02	-104.69	4.33	23.07	-105.08	4.68

The performance comparison of orientation-assisted BM strategies (PF is Particle Filter and RNN is Recurrent Neural Network) in comparison with RSRP-only BM in terms of beam prediction accuracy-AC (%), mean RSRP (dBm), and RSRP loss (dB).

Observations

TABLE I: The four cases with slow or fast rotation speed, normal or sporadic RSRPs information, and smooth or non-smooth rotation.

Case	Rotation speed (σ_r)	RSRP information rate (f)	Rotation smoothness (K)
1	Slow (1°)	Normal (1)	Smooth (21)
2	Fast (10°)	Normal (1)	Smooth (21)
3	Fast (10°)	Sporadic (3)	Smooth (21)
4	Fast (10°)	Sporadic (3)	Non-smooth (5)

- For Case 1, the accuracy and the mean RSRP of the orientation-assisted classical signal processing method is lower compared to RSRP-only.
- In Case 2, the RNN performs better than the RSRP-only, whereas the PF does not.
- In Case 3 and 4, the RSRP information rate is lower than the orientation information rate and the benefit of using the orientation-assisted strategies for BM becomes clear.
- Overall, the performance of the proposed deep learning strategy is consistently better than the PF strategy across all the scenarios.

Conclusions

2022 Samsung Research. All rights reserved

Conclusions

Summary

- We proposed a data-driven BM strategy that **jointly utilizes the RSRP and** orientation information through an RNN which outperforms the conventional BM.
 - Improve BM accuracy by 34% and boost the mean RSRP by 4.2 dB in challenging environments of high mobility and fast rotation UE and sporadic RSRP measurement.
- The **4.2 dB** gain is significant at the UE because it is equivalent to a cut of uplink transmission power by 62%, which substantially improves the UE battery life.
- When both RSRP measurement and orientation information are utilized, the data driven strategy performs consistently better than the model based PF strategy.
- Lastly, the high-complexity RNN training is done offline, and the data-driven strategy is more efficient than PF for online BM.

Conclusions

Future Works

- More training data from other deployment areas, for example, suburban, rural, can be obtained from simulation and used to train a more robust RNN for different propagation environments.
- Another future direction is to implement and evaluate the proposed strategy in a mobile device.
 - The 5G mmWave devices may have a different number of mmWave antenna arrays and mount them in different locations, thus the WB and NB radiation patterns will be different.

<u>SPR21587 - RF - Apple 5G mmWave Chipset</u> (systemplus.fr)

There are 3 mmWave antenna modules in S20, and 2 mmWave antenna modules in S21.

Thank You

