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» Overview

» mmWave beam management can be challenging, particularly in highly
dynamic scenarios.

* In this work, we use the orientation information coming from IMU for
effective BM.

» We utilize a data-driven strategy that fuses the reference signal
received power with orientation information using a RNN.

* The proposed data-driven strategy improves the beam-prediction
accuracy up to 34% and increases mean RSRP by up to 4.2 dB when
the UE orientation changes quickly.
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» Related Studies

3D orientation of a hand-held UE could change quickly in daily usage, e.g., from the
portrait to the landscape mode.

« The earlier work on using orientation information for BM has several shortcomings.

* In particular, the strategy of Shim et al can work only if the AoA aligns with the best beam'’s
peak which is not guaranteed. As a result, any prediction based on"AoA that is incorrect is

also likely to be sub-optimal.

« The beam steering method of Qi et al i.e. relative position/orientation tracking, is useful only
in LOS. Furthermare, the beam steering ignores the hardware limitations of cGrrent mmWave

systems.

 Unlike this work, the previous techniques do not consider the 5G signaling and realistic beam
codebooks.

Shim, Duk-Sun, et al. "Application of motion sensors for beam-tracking of mobile stations in mmWave communication systems.” Sensors 14.10 (2074): 19622-19638.

Qi, Zichen, and Wei Liu. "Three-dimensional millimetre-wave beam tracking based on smart phone sensor measurements and direction of arrival/time of arrival estimation for
5G networks."” IET Microwaves, Antennas & Propagation 12.3 (2018): 277-279.
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» Overall of the System Model 0 erent memirment . T

 We consider a communication
system where beam prediction
can be generated by USIﬂg Ill,! IIIBeamformedreferencesignaltransmission

e The RSRP information is

PSR (7 e ™ )
extracted from beam T
measurements. o (L Sweeping ) | _measurement L\ i1 based beam
Al Y [ Orientation ) prediction
|| IMUinput P> entatio
/ calculation
Vi \\ J \, )

* The orientation information, is =™ -
used at the UEside. | 07T
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» RSRP Information

» For downlink (DI(_J BM in 5G NR, the BS sends the beam-formed synchronization signal
blocks (SSBs) and CSI reference signals.

» The coordinate systems include
« The local coordinate system of the BS.
« The local coordinate system used at the UE. BS Local coordinate system UE Local coordinate system

» The SSBs are transmitted with periodicity Tgs, and the time variable t denotes the index
of an SSB. The received RSRP at time ¢t

c

SCS

s¢ = Pr + 101log,, <m> + pow2db Z db2pow (pt(c) + F;, (‘Pt(c).ﬁt(c)) + Gj, (¢t(C), 915(6))) e
c=1

* Pp: BS transmission power, 30 dBm
» SCS: subcarrier spacing, 240kHz
« BW: bandwidth: 100 MHz

« p: c-th path’s gain (dB)
. F, ((pt(c),ﬁt(c)): BS beam gain (dB) at the c-th path’s local angle of departure (gogc),ﬁt(c))

© G, (qbt(c),et(c)): UE beam gain (dB) at the c-th path’s local angle of arrival (fpt(c),et(c)) R \\‘:::::\3‘:\/ 7

* n;: RSRP measurement noise (dB)
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» Orientation Information o neria memcrement o P

« Our objective Is to use
orientation information
coming from an IMU together
with the RSRP information for

BM.

. . . . [cosa —sina 0]
* The UE orientation at time tis - r@={sna cosa o
. L 0 0 11
determined by Euler angles «;, Ccosp 0 sing]

C Ry®=| 0 1 0 R(@,,¥) 2 Rz(@) * Ry (B)*Ry ()

ﬁt aﬂd yt. |—sinff 0 cosp| by g !
« UE has access to the erroneous R0 cory —siny
estimates of Euler angles. 0 siny  cosy




Samsung Research

Approach
» Simulation Setup (1/2)

» The ray-tracing channels are generated for downtown
Rosslyn, VA, USA, using Wireless InSite® software.

Downtown Rosslyn VA
Green curve stands for the UE
trajectory on the ground.

* The A" search algorithm is used to find a short route
from one randomly picked destination point to the next.

» The operating frequency is 28 GHz, BW is T00MHz, SCS
is 240 kHz, and the transmit power P; = 30 dBm.

x (m)

 Single isotropic antenna. The UE either uses
- M}z =8 wide beams.

« M}z = 28 narrow beams.

» The codebooks are designed assuming 3-bit phase-
shifters with no amplitude scaling.

Beam index
13
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» Simulation Setup (2/2)

TABLE I: The four cases with slow or fast rotation speed, normal or
sporadic RSRPs information, and smooth or non-smooth rotation,

Case | Rotation speed (7,) | RSRP information rate (f) | Rotation smoothness (X))
1 Slow (1°) Normal (1) Smooth (21)
2 Fast (10°) Normal (1) Smooth (21)
3 Fast (10°) Sporadic (3) Smooth (21)
4 Fast (10°) Sporadic (3) Non-smooth (3)
« We create 4 test cases to concretely  + The rotation speed o, is either
capture the different levels of « Slow g, = 1° per 20 ms.
rotation speed, RSRP information « Fast g, = 10° per 20 ms.

rates, and orientation smoothness.

: . .  The rotation smoothness K is either
« The RSRP information rate f is . “Smooth” K = 21.

elth”er ; * “Non-smooth”, K = 5.
* "Normal”, f = 1 and we get an RSRP
measurement every Tgg.

» "Sporadic”, f = 3 and we get an RSRP  « A higher case index is a more favorable
measurement every 3Tss = 60 ms. scenario for orientation-information
use.
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» Data-driven Beam Management

« Our motivation of using ML to tackle the BM problem comes
from the fact that

* It Is a tracking problem and using ML technique such as RNN can help
capture the temporal information in the sequential input that can lead to
an improved performance compare to other approaches.

« With a strong fitting ability, Deep Learning has been adopted as a
promising solution for mmWave beam alignment, which is inherently a

complex nonlinear problem.
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» Deep Learning Architecture

e The architecture includes

e LSTM cell with a hidden size of

2 X My 128 neurons.

O M -

0. @ 2Lt
- LSTM Cell 0 i@ ;“ « FC layer of size 2 x My with a
’ — WA e 3.t . .

Hidden Size = 128 P N RelLU activation.
o ® P
ReLU Softmax « Another FC layer of size Myg

with a soft-max activation.
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» Data Preparation

» Input for one time step is a « We partitioned the data across the
vector with a shap_e of J1 X tr?J%Céc?cginin validating, and test data
(Myg + 9)]. It consist of the split is around 70%, 20%, and 10%.

following 2 components:

 We combine all the data to increase

« T — A table with a size of Myg. The the training data size for RNN
RSRP value of the last measured including
beam is store at that beam index.
tTg%vaIues at other entries are set '3 different UE speeds

« 2 different rotation speeds
* R — [3 X 3] matrix computed from
the current IMU orientation. It is « 2 different RSRP information rates
flatten to become a vector with a

shape of [1 x 9] » 2 levels of smoothness
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» Training Process

 The RNN adopts the categorical &, 2l (&),
cross-entropy loss function
M A Hidden state Hidden state Hidden state
* Ly = —Zmlﬁ Vt,m 108 Vt.m

* y:m Is the target value at time t of class
m.

. A%m is the predicted probability at time t
o)

ClaSS m. J[('Ztg:mpute Lojzg [(lilompute Loj\s]g L&)mpute Lc:g?;,L
. att=0 att =1 ' att =n )
.. . . i fnti
- Adam optimizer with a learning rate A frajectory ofm fme steps
of 0.001 was used.

Unrolling the RNN

 The training took 10,000 epochs to
converge with a batch size of 6
trajectories
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» Particle Filter as a baseline

N=100; time-step=1
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In the initial phase (time-step 1-100), particles converge to a
region close to the true AoA.

Samsung Research

N=100; time-step=470
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PF can track the sudden AoA change at time-step 495 due

to change from LOS to NLOS.

» The baseline particle filter method was proposed by Ali et al (IEEE Access 2021).

» |t fuses the RSRP and IMU information to track the AoA.

+ Its non-deterministic characteristic might lead to wrong predictions when uninformative sensor readings are collected for an extended period.

* Its computational intensive requirement (a good filter requires a significant amount of particles) will put quite a burden on the UE.

Setup:

{o, = 10°,
Low sensor error,
Normal measuremer
Filter length=21,
8 WBs,
100 random filters}
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Experimental Results

TABLE I: The four cases with slow or fast rotation speed, normal or
sporadic RSRPs information, and smooth or non-smooth rotation.

’ : f s Case | Rotation speed (7,.) | RSRP information rate (f) | Rotation smoothness (K)
o m pa rl So n o ra eg Ies 1 Slow (1°) Normal (1) Smooth (21)

2 Fast (10°) Normal (1) Smooth (21)
3 Fast (10°) Sporadic (3) Smooth (21)
4 Fast (10%) Sporadic (3) Non-smooth (5)
Case 1 2 3 4

Metric AC | RSRP | Loss || AC | RSRP | Loss | AC | RSRP | Loss | AC | RSRP | Loss
RSRP-only || 90.16 | -101.9 | 0.17 || 75.60 | -102.57 | 0.83 || 49.10 | -104.91 | 3.17 || 40.43 | -105.90 | 4.15
WB PF 7342 | -102.57 | 0.84 || 70.65 | -102.84 | 1.10 || 54.80 | -104.53 | 2.78 || 50.58 | -104.97 | 3.22
20kmh~! RNN 88.88 | -101.9 | 0.17 || 80.71 | -102.22 | 0.47 || 80.71 | -102.22 | 0.47 || 60.45 | -103.69 | 1.93
RSRP-only || 63.49 | -100.98 | 0.86 || 28.55 | -104.51 | 4.42 13.11 | -107.63 | 7.54 11.14 | -108.04 | 7.94
NB PF 37.14 | -102.99 | 2.87 || 33.05 | -103.38 | 3.29 || 21.72 | -105.56 | 547 21.41 | -105.66 | 5.57
RNN 5752 | -101.02 | 0.90 || 43.99 | -101.98 | 1.88 || 30.08 | -103.51 | 3.42 || 26.69 | -103.99 | 3.90
RSRP-only || 85.36 | -102.59 | 0.41 7220 | -103.06 | 1.09 || 44.16 | -105.65 | 3.68 || 36.87 | -106.53 | 4.56
WB PF 69.06 | -103.36 | 1.18 || 67.83 | -103.30 | 1.33 || 49.75 | -105.28 | 3.31 47.19 | -105.56 | 3.60
60 km h—1 RNN 84.53 | -102.55 | 0.36 || 78.18 | -102.63 | 0.64 || 78.18 | -102.63 | 0.64 || 57.09 | -104.24 | 2.26
RSRP-only || 53.39 | -102.21 | 1.76 || 26.36 | -105.10 | 4.84 10.74 | -108.33 | 8.07 9.53 | -108.73 | 843
NB PF 31.62 | -103.93 | 3.48 || 30.31 | -103.95 | 3.69 18.73 | -106.46 | 6.20 18.34 | -106.50 | 6.20
RNN SI.58 | -101.91 | L.44 || 41.35 | -102.47 | 2.20 || 28.03 | -104.10 | 3.84 || 25.40 | -104.53 | 4.22
RSRP-only || 81.07 | -102.43 | 0.66 || 69.31 | -103.22 | 1.30 || 41.12 | -106.03 | 4.11 34.52 | -106.78 | 4.86
WB PF 67.46 | -103.12 | 1.35 || 65.03 | -103.52 | 1.60 || 45.29 | -105.76 | 3.84 || 4298 | -106.02 | 4.10
100 ki b= RNN 80.65 -1 02.34 0.54 74.3§' - 102.80 0.86 74.36 | -102.80 | 0.86 || 52.33 | - 104.68 2.74
RSRP-only || 46.73 | -102.66 | 2.47 || 23.86 | -105.60 | 5.26 9.88 | -108.52 | 8.17 945 | -108.86 | 8.48
NB PF 20.24 | -104.28 | 4.09 || 27.79 | -104.64 | 4.30 17.00 | -106.97 | 6.63 15,98 | -107.14 | 6.76
RNN 4538 | -102.11 | 1.89 || 37.09 | -103.00 | 2.64 || 25.02 | -104.69 | 4.33 || 23.07 | -105.08 | 4.68

The performance comparison of orientation-assisted BM strategies (PF is Particle Filter and RNN is Recurrent Neural Network) in
comparison with RSRP-only BM in terms of beam prediction accuracy-AC (%), mean RSRP (dBm), and RSRP loss (dB).
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TABLE I: The four cases with slow or fast rotation speed, normal or

[ ]
> O b Se rva t I O n S sporadic RSRPs information, and smooth or non-smooth rotation.

Case | Rotation speed (o,) | RSRP information rate (/) | Rotation smoothness (/)
1 Slow (1°) Normal (1) Smooth (21)

Fast (10°) Normal (1) Smooth (21)

Fast (10°) Sporadic (3) Smooth (21)

Fast (10°) Sporadic (3) Non-smooth (3)

| W

« For Case 1, the accuracy and the mean RSRP of the orientation-assisted classical
sighal processing method is lower compared to RSRP-only.

* In Case 2, the RNN performs better than the RSRP-only, whereas the PF does not.

« In Case 3 and 4, the RSRP information rate is lower than the orientation information
rellte and the benefit of using the orientation-assisted strategies for BM becomes
clear.

 Qverall, the performance of the proFosed deep learning strategy is consistently
better than the PF strategy across all the scenarios.



Samsung Research

Conclusions



' C ONcC | us i ons Samsung Research

» Summary

- We proi).osed a data-driven BM strateﬂ}/\lthat gpintly utilizes the RSRP and
orientation information through an RNN which outperforms the conventional BM.

« Improve BM accuracy by 34% and boost the mean RSRP by 4.2 dB in challengin
environments of high"mability and fast rotation UE and sporadic RSRP measurement.

« The 4.2 dB gain is significant at the UE because it is equivalent to a cut of uplink
transmission power by 62%, which substantially improves the UE battery life.

« When both RSRP measurement and orientation information are utilized, the data
driven strategy performs consistently better than the model based PF strategy.

« Lastly, the high-comp_lexit¥ RNN training is done offline, and the data-driven
strategy is more efficient than PF for online BM.
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» Future Works

« More training data from other deployment areas,
for example, suburban, rural, can be obtained
from simulation and used to train a more robust
RNN for different propagation environments.

» Another future direction is to implement and
gval.uate the proposed strategy in a mobile
evice.

» The 5G mmWave devices may have a different number
of mmWave antenna arrays and mount them in
different locations, thus the WB and NB radiation I =7

patterns WI ” be d Ifferent SPR21587 - RF - Apple 5G mmWave Chipset
(systemplus.fr)

There are 3 mmWave antenna modules in S20, and 2
mmWave antenna modules in S21.



https://www.systemplus.fr/wp-content/uploads/2021/02/SPR21587-RF-Apple-iPhone-12-Series-5G-Chipset-Sample.pdf
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