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Overview

We proposed a spatial channel covariance estimation method

for hybrid analog/digital architecture

over spatially sparse frequency-selective channels

based on higher-order tensor decompositions
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Hybrid analog/digital architecture

Fully digital architecture
(Conventional MIMO)
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RF chai
cham

Hybrid analog/digital architecture
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precoder/
combiner
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Digital
baseband
precoder/
combiner

RF chain

RF chain

High complexity & power consumption
due to ADC/DAC:s in RF chains

precoder/
combiner

- Lalalala

Compromise between
complexity and performance
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Spatial channel covariance information

Hybrid precoding design based on
instantaneous full CSIT

Hybrid precoding design based on
spatial channel covariance information

Her =HFgr
4 )
—] Baseband Analog Baseband Analog
precoding precoding precoding precoding
FBB FRF FBB FRF
T T I —i 2
Instantaneous full CSI Instantaneous CSI of  Spatial channel covariance of H
. *
of the entire channel matrix H effective channel Hey (E[HH'])

difficult to obtain
over time-varying channels

w/ reduced
dimension

more feasible to estimate
over time-varying channels

Both methods have similar spectral efficiency for spatially sparse channels
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Is covariance estimation a challenging task?

Fully digital processing Hybrid analog/digital processing

)
/
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J .>_‘..\ Covariance 7 .>.;_I‘ Anal /Y Covariance
I b . ! nalog ! \ Esti
! B Estimator I et . 1 1 stimator

e 1 =1 Combiner 1 :
\ l‘ 1 \%Y \ I .
\ .>_Hl>—,'* - Input: x;,...X7 \ .'>—'*, \ J- Inputyy,..yr
N4 - Output: R, VS \ B (M<<N) Y _J-OutputR,
" x y (= W'x)

(Nx1)
raw measurements  |low-dimensional projections

T
* 1 *
Ry = E[xx*] ~ T Z Xt Xy (N, X 1 vectors) (Mgg x 1 vectors)
=l

How to estimate R, with only y,’s ?
—>challenging

Covariance estimation
is not challenging

There are some prior work based on
MUSIC/ESPIRT or compressive sensing




THE UNIVERSITY OF
TEXAS WHAT STARTS HERE CHANGES THE WORLD

—— AT AUSTIN —

Signal model and motivation
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Tensor signal model of wideband channel

N
Wideband channel vector

at subcarrier k & frame ¢

Y

d=0

§ N Ncp—1 jom(k—1
% g ht,k = E ht[d]e Ksper
I

L

Yd
where h,[d] =

{=1
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9tepprs(dTs — m¢)a(de)

¥

The wideband channel can be represented as the CPD (Canonical polyadic decomposition) form of a 3D-tensor.

3D tensor signal model
of wideband channel

% E CNant ><I(’sbcr XTfrm Whel‘e [H]n7k7t — E an,KCk,egt,f

Lch

z:1|1

Three factor
matrices

v
(antenna, subcarrier, frame) 4 e = [Alne N/ che = [Clioe N g =[Gl I
-t frame index ; C= [Cl CLCh] G = [gl chh]
- k: subcarrier index ’%
-k i €11 C1,L. 911 91,Lc
I: channel pa.th index é A — [al ar, h] h h
- d: delay tap index s N = : = : :
- Ncp: cyclic prefix size g = [a(d)l) a(¢LCh )]
- Ky # of subcarriers % CKyper,1 CKyper,Len 9Tem,1 9Ttem, Len
- Tim: # of frames < D e
Nep—1 .
- L #:1 of cl:anrlil pa.ths frequency (Kgper) Chi = i pps(dT, — Tg)e_%
- g channel path gain o
- T sampling period . . .
- 1+ channel path delay Qde-l factor matrix (Nant X Lch)/ \ mode-2 factor matrix (Kgper X L@ mode-3 factor matrix (TfmX Lch)/
- ¢;: angle-of-arrival (AocA)
- pes(f) : analog filter ) Space domain (antenna) Frequency domain (subcarrier) Time domain (frame)
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CPD (Canonical polyadic decomposition)

Factor matrices

4 N Factorizing a tensor into a sum of component rank-one tensors
(:fc;:)— —» tensor rank Lot
CPD X = Z l:)g ocpogy <:> [X]m,k:,t = Z bm,KCk,EQt,é o : outer product
=1 T LN ’ =1
\_ Y, rank-one tensor
é | Combination of the vectors from the rank-one components

B = [b br.] C=l[a cr.] G=[g1 8La] Al factor matrices have L, columns.

Y

N
-

Uniqueness
of CPD

~

If a higher-order tensor has a low tensor rank, its CPD is unique under some mild constraints.

L

P => This is the only possible combination of rank-one tensors that sums to the given tensor

ch
byocso . ; . . . ;
Loctost with the exception of two types of indeterminacy: scaling and permutation.

(=1

) Scaling indeterminacy : X = [[B,C,G]] < X =|[BAg,CAc,GAg]] for any diagonal matrices satisfying AgAcAg =1

2) Permutation indeterminacy : X = [B,C,G]] < X = [[BIL CIL GII]] for any permutation matrix II
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Tensor signal model for hybrid architecture

Wideband channel LW L Rx baseband signal

_ 488 for hybrid architecture
" R 4

[ WX l =i 0

( MRe X Nan) {(Naw % 1 Y(Mpe X 1) lmfﬂmfﬂfﬁmﬂ

7Ny
mode-1 fibers {71 mode 1 fibers of ¥
*
’H € CNa.ntXKsbchTfrm X = H X]- W = [[B7C7G]] X c CMRFXKsbchTfrm
o J o J
mode-1 unfolding W € Clen>¥n® : analog combining matrix mode-1 unfolding
(mode-1 matricization) ~ B = W*A € CMrrxFen ; effective array response matrix (mode-1 matricization)

4 mode-1 fibers of 7 ) [ W ]x [Iﬂﬂm[l:['[ﬂﬂﬂ[]] 4 mode-1 fiers of 1

..............................
\\\\\\

(Mgg X Nant) (Nant X KsperTtim ) (Mgp X KsperT rm)
» ¥ [l [I]
mode-1 unfolding of # mode-1 unfolding of

X(l) = W*H(l) — B (G’ ® C)T> \ X(l) - (CMRFXKSbchfrm

H(l) c (CNa,nt X Ksber Ttrm
J

J
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Proposed method

1
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Overall framework

&
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Goal: Estimate the spatial channel covariance matrix Ry, for a given measurement tensor &

o : R . :
(¥ Measurements Relationship between 7 and X" in hybrid architectures ut? Spatial channel covariance matrix
at baseband - 1 Heber Tim
p— analog > — Rh=— Lk OH(, k)
X H= [[A> C? G]] E combiner f=p X = [[B’ C’ G]] h Kover trm — ;H( oy B )
= v " 1 -
X € CMrex KuerXTrm H € ClNoneXKaberXTrom B (Mg X Now) = 185 = 040 =~ A(G'G@C*C)A*
k AN k KsperTirm )
(- W\ )
Step |.CPD of X Step 2. Estimation of A Step 3. Calculation of Ry,
input output input output input output )
X — {B,C,G} B — {A Ap} {A,Ap,C,G} — Ry
— + = =
Relationship between {B, C, G} and {]3, C, G} Relationship between A and A Relationship between Ry, and Ry
¢ ~icitac, =ty R, ~{R,
2 i A Sa ‘
G ~idliAg - ~
P A actuql factor permutquon Actual s.patlal char?nel
actual factor ~ permutation diagonal matrices matrix of # matrix covariance matrix
matrices of ¥ matrix satisfying ABAcAg = I
% \__ > Both permutation and scaling indeterminacy / \_ = Only permutation indeterminacy J U = No indeterminacy /)
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Step 1. CPD by ALS (Alternating Least Squares)

( Y
Goal Estimate {B, C, G} for a given X
. A
( )
Problem {B,C,G} = arg min HX
formulation B.C.G
. Y \g
m e el - e AT
* Equivalent form HX B, C, G”H X =BG C) |r
(using the Frobepius norms of = || X(2) — C(G ® B)THF
mode-n unfolding matrices) o o T
= [IX@ - G(COB) |
N~ e : .
Sub-step 1. Fix C and G. Then, update-B +— arg mln X1y — B(G ® C) |7 :N\ * Solution of sub-step IT
i E o o ! \
Solution §_ Sub-step 2. Fix B and G. Then, update C + argmin || X ) — C(G oB)"||F Su B= X ((G © C) )
(by using ALS) |\ 0 o c N o £ €
Sub-step 3. Fix B and C. Then, update G + argmin | X — G(CoB)T||p =X ((G 0 C) (G*G ® C*C) >
Y, G

Note. ALS guarantees convergence to a local (not global) optimal solution

13
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Step 2. Estimation of A

r

Goal Estimate {A, Ag} for a given B
f \
Problem 2R _ TS * 2 . o . .
_ {be¢,0B ¢} = argmin ||b; — W*a(¢)4d||® 2 Find ¢ that minimizes the vector angle betweenb, and W*a(¢

formulation ¢,6

. v
A € CNantXLen : The Nyl complex-valued elements are determined by L, real-valued variables
—> structured matrix a(¢) : array response vector
4 ) A
; [b;Wa(¢)| A . )
¢¢ = argmax — |:> A=la(¢;) --- a(or,)
Solution & el W-a(@)] | @)
. One-dimensional
(by using a search ‘
correlation- R R
based method) S a*(¢¢)Wh, A . & 2
B = s [> Ap = diag ([0g, -+ d81.])
[W*a(¢y)|? , ’, e
Scaling-related information

- N 14
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Step 3. Calculation of spatial channel covariance

[ Goal Estimate Ry, for a given {A, Ag, C, G}

v

4 N

Y 1 1
' Rh=———F"HH, =———A(G'GoC*C)A~"
‘l‘l‘l‘ im I:> [Iﬂﬂﬂ ﬂﬂ]m] g KSbCI‘Tfrm (1) (1) Ksbchfrm ( © )
Problem mode-1 A~ AIl* C~CAG'II* G=~GAGIT
. ey unfolding H(l) T
formulation While {A, C, G} are known, {II, Ac, Ag} are unknown.
- mode-1 : space (antenna) domain
- mode-2 : frequency (subcarrier) domain q
k / - mode-3 : time (frame) domain How to estimate Rh !

4

e I 1
A ~ AIT* R, = WA (GG C'C)A”
CzéAalﬂ* - sberd frm
DTSN 1 A TT* * \—1 Ak A — * * \—1 kN A — * A *
Gl Wy Al (H(AG) LG*GAGT 0 I(AL)1C*CAGTT )HA
Calculation . 1 . N .
nom em-S o AAL) AL (G'G e CTC) AGAGAY
= sberd frm
- 1 o N
ApAcAg =1 _ __d~'——  AAX (G*G * )A A*
\ / ZBZ AGB « - KSbCI‘Tfrm B © B
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Simulation results

SNR 0 dB

1
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m
. 08"
g
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&
&b oo MUSIC (Lo, = 6
5 05/ eo-oe°9°‘° ~0-MUSIC (Lg, = 7)| |
S04+ 0%° <30+ MUSIC (Lg, = 8)| |
& o? A= CS (Lo, = 6)
=03} —0-CS (L =7) |
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£ 027 ~4-CPD (Ly, =6) ||
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Relative precoding efficiency E|
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*
wegg“.au
aozwa'
>
@ >
ox ‘i aa
X3 =B MUSIC (Ly, = 6)
2x —0=-MUSIC (Lg, = 7)
o «=3-= MUSIC (Lo, = 8)
* FOR- _A-CS (L, = 6)
=0=-CS (L, =7)
od =%+ CS (La, = 8)
000000090007 |, i 6
003 06 90136 903 98 X3¢ %= ¥ X% { =0 = CPD (L, = 7)
«30- CPD (L, = 8)
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MUSIC-based method: Performance degrades rapidly as L, approaches Mgy

CS-based method: Performance is not good at low SNR

Simulation environments

. Element-wise amplitude = | ([W];=I)
. Element-wise phase : uniform [0~2pi]

Nant (# of antennas at BS) = 64
Mg (# of RF chains at BS) = 8

Ly (# of channel paths) = 6, 7, or 8
Kqper (# of subcarriers) = 128

Ncp (CP size) = 32

Ngria (# of CS grids) = 256

Single antenna at MS

Filter: sinc function (in time)
SNR=0dBor-10dB

Analog combining matrix : Random

Performance metric

sum of eigenvalues (estimated)
N

T (URRUs) (3 5,
Tr(UpRUR) \ 3L N
/

sum of eigenvalues (ideal)
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Conclusions

17
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Proposed spatial channel covariane estimation
for hybrid architectures

Assumption: Spatially sparse freqeuncy-selective channels

Key ideas: Uniqueness of CPD

Good in particualr when
I) the number of RF chains decreases apporaching

the number of channel paths
2) SNRis low

Performance:
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Thank you !

V. Z®] Cockrell School of Engineering .



