Automotive radar radiations as signals of opportunity for millimeter wave V2I links

Anum Ali¹, Nuria González-Prelcic^{1,2}, and Amitava Ghosh³

¹The University of Texas at Austin, Austin, TX.
²Universidade de Vigo, Vigo, Spain.
³Nokia Bell Labs, Naperville, IL .

This material is based upon the work supported a gift from Nokia.

Outline

Outline

Use of out-of-band information for mmWave link configuration

Motivation

Ray-tracing simulation scenario and simulation results

Challenges

Passive radar to tap transmissions of automotive radar on the vehicles

Main idea

How to overcome challenges in using FMCW transmissions for mmWave

Simulation

Motivation

Why millimeter wave communication?

More antennas and hardware constraints

Many antennas at the TX and RX

Hardware constraints impact how the antennas are used

Directional transmission/reception for sufficient link margin Significant fraction of channel coherence time spent in training

Low overhead link configuration challenging for mmWave

Out-of-band information for mmWave

Out-of-band info. available to help configure mmWave links

[1] www.3gpp.org/news-events/3gpp-news/1929-nsa_nr_5g

[2] L. Verma, M. Fakharzadeh, and S. Choi, "Wifi on steroids: 802.11 ac and 802.11 ad", IEEE Wireless Commun., vol. 20, no. 6, pp. 30–35, Dec. 2013.

[3] T. Nitsche, A. B. Flores, E. W. Knightly, and J. Widmer, "Steering with eyes closed: mm-wave beam steering without in-band measurement," in Proc. INFOCOM, Apr. 2015, pp. 2416–2424.
 [4] J. Choi, V. Va, N. Gonzalez-Prelcic, R. Daniels, C. R. Bhat, and R. W. Heath Jr., "Millimeter wave vehicular communication to support massive automotive sensing," IEEE Commun. Mag., vol. 54, no. 12, pp. 160–167, Dec. 2016.

Prior work

No prior work on using passive radar for mmWave systems

[1] A. Ali, N. González-Prelcic, and R. W. Heath Jr., "Millimeter wave beam-selection using out-of-band spatial information," IEEE Trans. Wireless Commun., vol. 17, no. 2, pp. 1038–1052, 2018.
[2] A. Ali, N. González-Prelcic, and R. W. Heath Jr., "Spatial Covariance Estimation for Millimeter Wave Hybrid Systems using Out-of-Band Information," arXiv preprint arXiv:1804.11204, 2018.
[3] N. Garcia et al., "Location-aided mm-wave channel estimation for vehicular communication," in Proc. IEEE Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC), Jul. 2016, pp. 1–5.
[4] V. Va et al., "Position-aided millimeter wave V2I beam alignment: A learning-to-rank approach," in Proc. IEEE Int. Symp. Pers., Indoor Mobile Radio Commun. (PIMRC), Oct. 2017, pp. 1–5.
[5] N. González-Prelcic, R. Méndez-Rial, and R. W. Heath Jr., "Radar aided beam alignment in mmwave V2I communications supporting antenna diversity," in Proc. Inf. Theory Appl. (ITA) Wksp, Feb. 2016.

Passive radar at RSU

Main idea

Similarity expected in radar and comm. azimuth power spectrum (APS)

Communication and radar system setup

Estimate radar receive covariance and use it for mmWave link configuration

Challenges

Challenges in using FMCW passive radar

Lack of waveform knowledge at roadside unit

Proposed architecture recovers spatial cov. perfectly (not range or doppler)

Bias correction for FMCW radar

Established a connection with a well studied problem to correct the bias

J. Kim, J. Chun, and S. Song, "Joint Range and Angle Estimation for FMCW MIMO Radar and Its Application," arXiv preprint arXiv:1811.06715, 2018.
 M. Jordan, X. Gong, and G. Ascheid, "Conversion of the spatio-temporal correlation from uplink to downlink in FDD systems," in Proc. IEEE WCNC, Apr. 2009, pp. 1–6.

Similarity metric to compare power spectra

Need a similarity metric for spectra that informs about system performance

Proposed similarity metric

Definition

 $S_{1\to 2}(L,N) = \frac{\sum_{i\in\mathcal{I}_1} \mathbf{d}_2[i]}{\sum_{i\in\mathcal{I}_2} \mathbf{d}_2[i]}$

For two N point spectra \mathbf{d}_1 and \mathbf{d}_2

 \mathcal{I}_1 (\mathcal{I}_2) is the index set of

of L largest entries of \mathbf{d}_1 (\mathbf{d}_2)

N related to antennas, L to streams

S normalized in [0,1]

cardinality $L \leq N$

Consists of indices

Intuitive explanation

numerator

Normalized frequency

Normalized frequency

Generally sim. increases

(decreases) with L (N)

Normalized power 0 2.0 1

Normalized power 0.20

APS

denominator

0.5

0.5

Relation with rate

Similarity related with RPE

Angles on DFT grid or infinite antennas

RPE related with rate [1]

The proposed similarity metric for power spectra informs about relative rate

[1] S. Park et. al., ``Spatial Channel Covariance Estimation for Hybrid Architectures Based on Tensor Decompositions", submitted to IEEE Trans. Wireless Commun.

-0.5

-0.5

Simulation scenario and results

Ray-tracing simulation scenario

Ray-tracing simulation consistent with 3GPP-V2X evaluation methodology

[1] 3GPP, "Study on evaluation methodology of new Vehicle-to-Everything V2X use cases for LTE and NR," 3GPP, TR 37.885, Sep. 2018, version 15.1.0.

Simulation result: Bias correction

Bias correction improves the similarity between radar and communication

Simulation result: NLOS beam-selection

Parameter	Value
Radar frequency	76 GHz
Communication frequency	73 GHz
Antennas at RSU	128
Comm. antennas at Vehicle	16
Radar and Communication BW	1 GHz
GNSS error	10 m
Transmit power	30 dBm

Proposed radar assisted strategy particularly useful in NLOS scenario

Summary

Summary

	Proposed a simplified radar receiver to recover spatial info.	
Contributions	Proposed a radar bias correction strategy	
	Proposed a similarity metric to compare power spectra	

Thank you!

Bias in FMCW radar

Angle dependent phase offset in comm.

Angle dependent phase offset in FMCW

Additional phase variation causes bias in FMCW radar